125mA, Frequency-Selectable, Switched-Capacitor Voltage Converters

Abstract

General Description The MAX1680/MAX1681 inductorless switched-capacitor voltage converters either invert an input voltage of +2.0 V to +5.5 V or double it while supplying up to 125 mA output current. They have a selectable-frequency option that allows the use of small capacitors: $4.7 \mu \mathrm{~F}$ (MAX1680), $1 \mu \mathrm{~F}$ (MAX1681). With their high output current capability, these charge-pump devices are suitable replacements for inductor-based regulators, which require more expensive external components and additional board space. The devices' equivalent output resistance (typically 3.5Ω) allows them to deliver as much as 125 mA with only a 440 mV drop. A shutdown feature reduces quiescent current to less than $1 \mu \mathrm{~A}$. The MAX1680/MAX1681 are available in 8-pin SO packages. For devices that deliver up to 50 mA in smaller $\mu \mathrm{MAX}$ packages, refer to the MAX860/MAX861 data sheet.

Applications
Local Negative Supplies
Interface Power Supplies
Op-Amp Power Supplies
MOSFET Bias
Selectable Switching Frequencies:
125kHz/250kHz (MAX1680)
500kHz/1 MHz (MAX1681)
Allow Use of Small Capacitors
(1 $\mu \mathrm{F}$ for the MAX1681)
125mA Output Current
3.5 Output Impedance
1 AA Logic-Controlled Shutdown
Configurable as Voltage Inverters or Doublers
+2.0V to +5.5V Input Voltage Range
Available in 8-Pin SO Packages

PART	TEMP. RANGE	PIN-PACKAGE
MAX1680C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX1680ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX1681C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX1681ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

*Contact factory for dice specifications.

Pin Configuration appears at end of data sheet.
Typical Operating Circuits

125mA, Frequency-Selectable, Switched-Capacitor Voltage Converters

ABSOLUTE MAXIMUM RATINGS
IN..-0.3V to +6V
LV... VOUT $^{\text {- } 0.3 V) ~ t o ~(V I N ~}+0.3 \mathrm{~V}$)
CAP+ ..-0.3V to (VIN + 0.3V)
SHDN, FSEL(VLV - 0.3 V) to (VIN +0.3 V)
OUT, CAP- ..-6V to 0.3V
Continuous Output Current ..135mA
Output Short-Circuit Duration to GND (Note 1) 1 sec

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)......	471 mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$50^{\circ} \mathrm{C}$
Storage Temperature Range	$65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$

Note 1: Shorting OUT to IN may damage the device and should be avoided.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Typical Operating Circuits (inverter configuration), $\mathrm{FSEL}=\mathrm{LV}=\mathrm{GND}, \mathrm{V} \mathbb{I N}=5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=10 \mu \mathrm{~F}$ (MAX1680), C1 $=\mathrm{C} 2=2.2 \mu \mathrm{~F}$ (MAX1681), $\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Input Voltage Range	VIN	Inverter configuration,$\mathrm{RL}=1 \mathrm{k} \Omega, \mathrm{LV}=\mathrm{GND}$		MAX1680	2.0		5.5	V
				MAX1681	3.0		5.5	
		Doubler configuration,$\mathrm{RL}=1 \mathrm{k} \Omega, \mathrm{LV}=\mathrm{OUT}$		MAX1680	2.5		5.5	
				MAX1681	4.0		5.5	
Supply Current	I+	MAX1680	FSEL = IN	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	4.5	mA
			(125kHz)				5.4	
			FSEL = LV	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5	9	
			(250kHz)				10.8	
		MAX1681	$\begin{aligned} & \hline \text { FSEL = IN } \\ & (500 \mathrm{kHz}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		10	18	
							21.6	
			$\begin{aligned} & \text { FSEL = LV } \\ & (1 \mathrm{MHz}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20	36	
							43.2	
Output Voltage Under Load (Note 2)	VLoad	$\mathrm{ILOAD}=125 \mathrm{~mA}$			-3.75	-4.56		V
Output Resistance (Note 2)	Rout	FSEL = IN or LV				3.5	10	Ω
Output Resistance to Ground in Shutdown	Rout(SHUT)	SHDN $=1 \mathrm{~N}$				1	5	Ω
Shutdown Current	I+SHDN	OUT = GND, SHDN $=$ IN					1	$\mu \mathrm{A}$
Input Bias Current (SHDN)	ISHDN				-1		1	$\mu \mathrm{A}$
Input Bias Current (FSEL)	IFSEL				-1		1	$\mu \mathrm{A}$
Shutdown, FSEL Thresholds	$\mathrm{V}_{\text {IL }}$	LV = GND (Note 3)					1	v
	VIH				4			V
Switching Frequency	fosc	MAX1680	FSEL = LV	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	187	250	313	kHz
					157		348	
			FSEL IN	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	94	125	156	
			FSEL $=1 \times$		79		174	
		MAX1681	FSEL = LV	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	750	1000	1250	
					570		1490	
			FSEL $=1 \mathrm{~N}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	375	500	625	
					285		745	

125mA, Frequenc y-Selectable, Switched-Capacitor Voltage Converters

ELECTRICAL CHARACTERISTICS (continued)

(Typical Operating Circuits (inverter configuration), $\mathrm{FSEL}=\mathrm{LV}=\mathrm{GND}, \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=10 \mu \mathrm{~F}$ (MAX1680), C1 $=\mathrm{C} 2=2.2 \mu \mathrm{~F}$ (MAX1681), $\mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Power Efficiency		$R \mathrm{~L}=100 \Omega$ to $\mathrm{GND}, \mathrm{FSEL}=\mathbb{I N}$	MAX1680		90		\%
			MAX1681		80		

ELECTRICAL CHARACTERISTICS

(Typical Operating Circuits (inverter configuration), FSEL $=\mathrm{LV}=\mathrm{GND}, \mathrm{V}$ IN $=5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=10 \mu \mathrm{~F}(\mathrm{MAX1680}), \mathrm{C} 1=\mathrm{C} 2=2.2 \mu \mathrm{~F}$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Input Voltage Range	VIN	Inverter configuration,	MAX1680	2.0	5.5	V
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{LV}=\mathrm{GND}$	MAX1681	3.0	5.5	
		Doubler configuration,$R \mathrm{~L}=1 \mathrm{k} \Omega, \mathrm{LV}=\mathrm{OUT}$	MAX1680	2.5	5.5	
			MAX1681	4.0	5.5	
Supply Current	I+	MAX1680	$\begin{aligned} & \text { FSEL = IN } \\ & (125 k H z) \end{aligned}$		5.4	mA
			$\begin{aligned} & \text { FSEL = LV } \\ & (250 \mathrm{kHz}) \end{aligned}$		10.8	
		MAX1681	$\begin{aligned} & \text { FSEL = IN } \\ & (500 \mathrm{kHz}) \end{aligned}$		21.6	
			$\begin{aligned} & \text { FSEL = LV } \\ & (1 \mathrm{MHz}) \end{aligned}$		43.2	
Output Voltage Under Load (Note 2)	VLOAD	$\mathrm{ILOAD}=125 \mathrm{~mA}$		-3.75		V
Output Resistance (Note 2)	Rout	FSEL $=$ IN or LV			10	Ω
Output Resistance in Shutdown	Rout(SHUT)	SHDN $=1 \mathrm{~N}$			5	Ω
Shutdown Current	I+SHDN	OUT = GND, SHDN $=\mathrm{IN}$			1	$\mu \mathrm{A}$
Input Bias Current (SHDN)	ISHDN				1	$\mu \mathrm{A}$
Input Bias Current (FSEL)	IFSEL			-1	1	$\mu \mathrm{A}$
Shutdown, FSEL Thresholds	V_{IL}	LV = GND (Note 3)		-1	1	V
	V_{IH}			4		
Switching Frequency	fosc	MAX1680	FSEL = LV	157	348	kHz
			FSEL = IN	79	174	
		MAX1681	FSEL = LV	570	1490	
			FSEL = IN	285	745	

Note 2: C 1 and C 2 are low- $\operatorname{ESR}(<0.2 \Omega)$ capacitors. Capacitor ESR adds to the circuit's output resistance. Using capacitors with higher ESR reduces output voltage and efficiency. The specified output resistance includes the C1 and C2 0.2Ω ESR.
Note 3: The typical threshold for $\mathrm{V}_{\text {INPUT }}$ other than +5 V is 0.35 V INPUT $\left(\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IH}}\right)$.
Note 4: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

125mA, Frequenc y-Selectable, Switched-Capacitor Voltage Converters

(All curves generated using the inverter configuration shown in the Typical Operating Circuits with LV = GND, FSEL = IN or LV, $\mathrm{C} 1=\mathrm{C} 2=10 \mu \mathrm{~F}$ (MAX1680), $\mathrm{C} 1=\mathrm{C} 2=2.2 \mu \mathrm{~F}$ (MAX1681), and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Test results are also valid for the doubler configuration with $\mathrm{LV}=\mathrm{OUT}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

OUTPUT VOLTAGE DROP vs. LOAD CURRENT

OUTPUT SOURCE RESISTANCE vs. SUPPLY VOLTAGE

OSCILLATOR FREQUENCY CHANGE
vs. SUPPLY VOLTAGE

OUTPUT SOURCE RESISTANCE vs TEMPERATURE

OSCILLATOR FREQUENCY CHANGE vs. TEMPERATURE

1680 EFFICIENCY vs.

125mA, Frequenc y-Selectable, Switched-Capacitor Voltage Converters

Typical Operating Characteristics (continued)
(All curves generated using the inverter configuration shown in the Typical Operating Circuits with LV = GND, FSEL = IN or LV, $C 1=C 2=10 \mu \mathrm{~F}$ (MAX1680), $\mathrm{C} 1=\mathrm{C} 2=2.2 \mu \mathrm{~F}$ (MAX1681), and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Test results are also valid for the doubler configuration with $\mathrm{LV}=\mathrm{OUT}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

MAX1680 OUTPUT SOURCE RESISTANCE vs. CAPACITANCE (INVERTER CONFIGURATION)

M AX1681 OUTPUT SOURCE RESISTANCE vs. CAPACITANCE (INVERTER CONFIGURATION)

M AX1680 OUTPUT SOURCE RESISTANCE vs. CAPACITANCE (DOUBLER CONFIGURATION)

MAX1681 OUTPUT SOURCE RESISTANCE vs. CAPACITANCE (DOUBLER CONFIGURATION)

125mA, Frequenc y-Selectable, Switched-Capacitor Voltage Converters

Pin Description

PIN	NAME	FUNCTION		
		INVERTER		

Detailed Description

The MAX1680/MAX1681 switched-capacitor voltage converters either invert or double the input voltage. They have low output resistance (3.5Ω) and can deliver up to 125 mA output current. These devices operate at one of two selectable frequencies: $125 \mathrm{kHz} / 250 \mathrm{kHz}$ (MAX1680) and $500 \mathrm{kHz} / 1 \mathrm{MHz}$ (MAX1681). This provides the flexibility to optimize capacitor size, operating supply current, and overall circuit efficiency. Frequency selection also allows for minimizing coupling into other sensitive circuits. These devices contain no internal divider; the oscillator frequency equals the switching frequency. The devices can easily be cascaded to produce a higher output voltage, or paralleled to deliver more current.
The MAX1680/MAX1681 feature a shutdown mode that reduces supply current to $<1 \mu \mathrm{~A}$ (SHDN $=$ high). OUT, in the inverter configuration, pulls to ground in shutdown mode. Shutdown is not available in the doubler configuration; connect SHDN to OUT.

Applications Information

Voltage Inverter

A simple voltage inverter is the most common MAX1680/MAX1681 application. It requires three external capacitors (including the input bypass capacitor) as shown in the Typical Operating Circuits (inverter configuration). Although the output is not regulated, low
output resistance produces a typical drop of only 0.44 V with a 125 mA load. This low output resistance makes the devices fairly insensitive to changes in load (see the graphs for Output Source Resistance vs. Temperature and Supply Voltage in the Typical Operating Characteristics section).

Voltage Doubler

The MAX1680/MAX1681 can be configured as a voltage doubler with two external capacitors as shown in the Typical Operating Circuits (doubler configuration). When loaded, the output voltage drop is similar to that of the voltage inverter. The minimum input supply range is slightly higher than in the inverter configuration. Calculate ripple voltage using the equation in the Capacitor Selection section.

Frequency Control

A frequency-control pin, FSEL, provides design flexibility. Each device has two selectable frequencies: $125 \mathrm{kHz} / 250 \mathrm{kHz}$ (MAX1680) and $500 \mathrm{kHz} / 1 \mathrm{MHz}$ (MAX1681). This allows optimization of capacitor size and supply current for a given output load. Table 1 summarizes the frequency options
Table 1. Nominal Switching Frequencies

FSEL CONNECTION	FREQUENCY (kHz)	
	MAX1680	MAX1681
FSEL $=$ LV	250	1000
FSEL $=$ IN	125	500

125mA, Frequency-Selectable, Switched-Capacitor Voltage Converters

Operating Frequency Trade-Offs

 It is important to recognize the trade-offs between switching frequency, power consumption, noise, cost, and performance. Higher frequency switching reduces capacitor size while maintaining the same output impedance, thus saving capacitor cost and board space. Lower frequency designs use less supply current. Table 2 summarizes the relative trade-offs.
Table 2. Switching-Frequency Trade-Offs

ATTRIBUTE	LOWER FREQUENCY	HIGHER FREQUENCY
Output Ripple	Larger	Smaller
C1, C2 Values	Larger	Smaller
Supply Current	Smaller	Larger

Capacitor Selection

The MAX1680/MAX1681 are tested with capacitor values of $10 \mu \mathrm{~F}$ and $2.2 \mu \mathrm{~F}$, respectively. Capacitor size and switching speed determine output resistance. Larger C1 values decrease the output resistance until the internal switch resistance (3.5Ω typ) becomes the dominant term. Low-ESR capacitors minimize output resistance and ripple voltage. The entire circuit's output resistance can be approximated by the following equation:
ROUT \cong Ro $+4 \times$ ESRC1 + ESRC2 $+[1 /(f o s c \times C 1)]+$ [1/ (fosc x C2)]
where Ro is the device's internal effective switch resistance and fosc is the switching frequency. Output
resistance is a critical circuit component, as it determines the voltage drop that will occur at the output from the ideal value of -VINPUT (or 2VINPUT when doubling).
To optimize performance, minimize overall resistance in the system. In particular, equivalent series resistance (ESR) in the capacitors produces significant losses as large currents flow through them. Therefore, choose a low-ESR capacitor for highest efficiency. Table 3 lists recommended capacitors and their suppliers.
Calculate the output ripple voltage as follows:
VRIPPLE $=[($ lOUT $) /(2 \times$ fOSC \times C2 $)]+2 x$ (IOUT \times ESRC2) where IOUT is the load current, fs is the charge pump's operating frequency, C2 is the output capacitor, and ESRC2 is the output capacitor's ESR.
Table 4 lists the minimum recommended capacitances that allow for the maximum output current. The output capacitor, C2, is normally equal to or greater than the charge-pump capacitor, C1. Capacitor values can be scaled directly proportional to the input voltage, frequency, and load current. For example, for VINPUT = 5 V , ILOAD $=125 \mathrm{~mA}$ at $\mathrm{fOSC}=125 \mathrm{kHz}$, a $6.4 \mu \mathrm{~F}$ minimum capacitor is recommended. For an output of only 62.5 mA , a $3.2 \mu \mathrm{~F}$ capacitor is recommended. C1's value can be estimated as follows:
$\mathrm{C} 1=6.4 \mu \mathrm{~F} \times$ (VINPUT / 5.0V) $\times(125 \mathrm{kHz} / \mathrm{fOSC}) \times$ (ILOAD / 125mA)
where fosc is the switching frequency (kHz) and ILOAD is the output current (mA) required.

Table 3. Low-ESR Capacitor Suppliers

SUPPLIER	PHONE	FAX	DEVICE TYPE
AVX	$\begin{aligned} & \text { (803) 946-0690 } \\ & \text { (800) 282-4975 } \end{aligned}$	(803) 626-3123	Surface mount, TPS series
Marcon/United Chemi-Con	(847) 696-2000	(847) 696-9278	Ceramic capacitors
Matsuo	(714) 969-2491	(714) 960-6492	Surface mount, 267 series
Nichicon	USA: (847) 843-7500 Japan: 81-7-5231-8461	USA: (847) 843-2798 Japan: 81-7-5256-4158	Through-hole, PL series
Sanyo	USA: (619) 661-6835 Japan: 81-7-2070-6306	USA: (619) 661-1055 Japan: 81-7-2070-1174	Through-hole, OS-CON series
Sprague	(603) 224-1961	(603) 224-1430	Surface mount, 595D series
TDK	(847) 390-4373	(847) 390-4428	Ceramic capacitors
United Chemi-Con	(714) 255-9500	(714) 255-9400	Through-hole, LXF series
Vishay/Vitramon	(203) 268-6261	(203) 452-5670	SMT ceramic chip capacitors

125mA, Frequenc y-Selectable, Switched-Capacitor Voltage Converters

Table 4. Minimum Recommended Capacitances for Maximum Output Current

fosc (kHz)	CAPACITANCE ($\mu \mathrm{F}$) (C1 = C2)			
	VIN $=2 \mathrm{~V}$	VIN $=3 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}$	V IN $=5 \mathrm{~V}$
125	2.5	3.8	5.1	6.4
250	1.2	1.9	2.5	3.2
500	0.6	0.9	1.2	1.6
1000	0.3	0.4	0.6	0.8

NOTE: USE4.7 7 F CAPACITORS FORMAX1680

Figure 1. Cascading MAX1680/MAX1681s to Increase Output Voltage

Bypass Capacitor

 Bypass the input voltage to reduce AC impedance and to prevent internal switching noise. Bypassing depends on the source impedance location. The AC ripple current is $2 \times$ lout for the doubler and the inverter. Use a large bypass capacitor (equal to C1) if the supply has high AC impedance.
Cascading Devices

To produce larger negative voltages, cascade two devices (Figure 1). For two devices, the unloaded output voltage is approximately $-2 \times$ VINPUT, but this value is reduced slightly by the first device's output resistance multiplied by the second device's quiescent current. The effective output resistance for a cascaded
device is larger than that for an individual device (20Ω for two devices). Cascading several devices increases output resistance and reduces efficiency. If a large negative voltage is required for several stages, an inductive inverting switching regulator such as the MAX629 or MAX774 may offer more advantages.

Paralleling Devices
Parallel two or more MAX1680/MAX1681s to reduce output resistance voltage drop under a given load. With reduced output resistance, paralleled devices deliver higher load currents. Figure 2 shows two MAX1680/MAX1681s connected in parallel. Output resistance is inversely proportional to the number of devices.

125mA, Frequenc y-Selectable, Switched-Capacitor Voltage Converters

Figure 2. Paralleling MAX1680/MAX1681s to Increase Output Current

Combined Doubler and Inverter

Figure 3 shows a single MAX1680/MAX1681 as an inverter and a doubler. The maximum output current is the sum of the loads on the two outputs and is still limited to 125 mA . As the device is loaded, the output voltages move toward ground. In this particular configuration, connect LV to GND (inverter). The diodes used in the circuit cause a drop of approximately 0.7 V in the doubler's output voltage, impacting efficiency.

Compatibility with the MAX660 and MAX860/MAX861
The MAX1680/MAX1681 can be used in place of the MAX860/MAX861, except for the SHDN and FSEL pins. The MAX1680/MAX1681 shut down with a high input voltage, compared with the MAX860/MAX861. The MAX1680/MAX1681 have only two frequency choices.
Replacing the MAX660 with the MAX1680/MAX1681 involves a wiring change, as the external oscillator pin is replaced by the shutdown feature. Table 5 compares the devices.

Figure 3. Combined Doubler and Inverter

125mA, Frequenc y-Selectable, Switched-Capacitor Voltage Converters

Table 5. Device Comparison

PART NUMBER	TYPICAL QUIESCENT CURRENT (mA)	OUTPUT CURRENT $(\mathbf{m A})$	OUTPUT RESISTANCE (Ω)	SWITCHING FREQUENCY (kHz)
MAX660	$0.12 / 1.0$	100	6.5	$5 / 40$
MAX665	$0.20 / 1.0$	100	6.5	$5 / 40$
MAX860	$0.20 / 0.60 / 1.40$	50	12	$6 / 50 / 130$
MAX861	$0.30 / 1.10 / 2.50$	50	12	$13 / 100 / 250$
MAX1680	$2.5 / 5.0$	125	3.5	$125 / 250$
MAX1681	$10 / 20$	125	3.5	$500 / 1000$
ICL7660	0.080	10	55	5

TOP VIEW

TRANSISTOR COUNT: 171
SUBSTRATE CONNECTED TO IN
\qquad

125mA, Frequency-Selectable, Switched-Capacitor Voltage Converters

125mA, Frequenc y-Selectable, Switched-Capacitor Voltage Converters

NOTES

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1997 Maxim Integrated Products Printed USA MAXINI is a registered trademark of Maxim Integrated Products.

